Праймер это в биологии: Праймер — это… Что такое Праймер?

Праймер — Википедия Переиздание // WIKI 2

Праймер (англ. primer) — короткий фрагмент нуклеиновой кислоты (олигонуклеотид), комплементарный ДНК- или РНК-мишени; служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы (при репликации ДНК). Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3′-конца (гидроксильной группы) праймера. ДНК-полимераза последовательно добавляет к 3′-концу праймера нуклеотиды, комплементарные матричной цепи[1][2].

В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (праймаза у прокариот, ДНК-полимераза у эукариот) и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющий в норме функции репарации[2].

Многие лабораторные методы в биохимии и молекулярной биологии, которые предполагают использование ДНК-полимеразы, такие, как секвенирование или полимеразная цепная реакция, требуют наличие коротких олигонуклеотидов (праймеров). Такие праймеры обычно имеют длину от 6 до 50 оснований и являются химически синтезированными олигонуклеотидами

[3].

Примечания

  1. Кнорре Д. Г., Мызина С. Д. Биологическая химия. — 3. — Москва: Высшая школа, 2000. — 479 с. — 7000 экз. — ISBN 5060037207.
  2. 1 2 Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. — Москва: Мир, 2002. — 589 с. — ISBN 5030033289.
  3. Альбертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки: в трех томах. — 2. — Москва: Мир, 1994. — Т. 1. — 517 с. — 10 000 экз. — ISBN 5030019855.

См. также

Эта страница в последний раз была отредактирована 6 августа 2019 в 06:27.

Праймеры — это… Что такое Праймеры?

  • Праймеры — искусственно синтезированные олигонуклеотиды, комплиментарные соответствующим участкам ДНК мишени… Источник: ПОРЯДОК И ОРГАНИЗАЦИЯ КОНТРОЛЯ ЗА ПИЩЕВОЙ ПРОДУКЦИЕЙ, ПОЛУЧЕННОЙ ИЗ/ИЛИ С ИСПОЛЬЗОВАНИЕМ ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫХ МИКРООРГАНИЗМОВ И …   Официальная терминология

  • Праймеры

    — 13. Праймеры искусственно синтезируемые короткие последовательности нуклеотидов, комплементарные определенному участку искомой ДНК, используемые в полимеразной цепной реакции. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Феромоны-праймеры — Феромоны, вызывающие долговременный физиологический эффект или физиологические изменения преимущественно гормонального характера в организме реципиента, например, влияющие на эстральный цикл особей женского пола. Также называются прайминг… …   Психология ощущений: глоссарий

  • Полимеразная цепная реакция — (ПЦР)  экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе). Помимо амплификации ДНК, ПЦР… …   Википедия

  • ДНК-маркер — Рис.1 Электрофорез ПЦР продуктов в агарозном геле и окрашенных бромистым этидием, полученных методом IRAP амплификации. Левая дорожка  ДНК известной длины (от 900 до 3000 пар нуклеотидов) …   Википедия

  • ПЦР — Запрос «ПЦР» перенаправляется сюда. Cм. также другие значения. Полимеразная цепная реакция (ПЦР)  экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой… …   Википедия

  • Полимеразная цепная — Запрос «ПЦР» перенаправляется сюда. Cм. также другие значения. Полимеразная цепная реакция (ПЦР)  экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой… …   Википедия

  • ДНК-полимераза — Трёхмерная структура ДНК связывающих спирально шпилечных участков в человеческой бета ДНК полимеразе ДНК полимераза  фермент, участвующий в репликации ДНК. Ферменты этого класса катализир …   Википедия

  • ДНК-зависимая ДНК-полимераза — Трехмерная структура ДНК связывающих спирально шпилечных участков в человеческой бета ДНК полимеразе ДНК полимераза  фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки… …   Википедия

  • ДНК-полимеразы — Трехмерная структура ДНК связывающих спирально шпилечных участков в человеческой бета ДНК полимеразе ДНК полимераза  фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки… …   Википедия

  • Праймер — Карта знаний

    • Праймер (англ. primer) — это короткий фрагмент нуклеиновой кислоты (олигонуклеотид), комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы (при репликации ДНК). Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3′-конца (гидроксильной группы) праймера. ДНК-полимераза последовательно добавляет к 3′-концу праймера нуклеотиды, комплементарные матричной цепи.

      В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющий в норме функции репарации.

      Многие лабораторные методы в биохимии и молекулярной биологии, которые предполагают использование ДНК-полимеразы, такие, как секвенирование или полимеразная цепная реакция, требуют наличие коротких олигонуклеотидов (праймеров). Такие праймеры обычно длиной от 6 до 50 оснований, химически синтезированные олигонуклеотиды.

    Источник: Википедия

    Связанные понятия

    Амплификация (лат. amplificatio — усиление, увеличение), в молекулярной биологии — процесс образования дополнительных копий участков хромосомной ДНК, как правило, содержащих определённые гены либо сегменты структурного гетерохроматина. Амплификация может быть ответом клеток на селективное воздействие (например, при действии метотрексата). Амплификация — один из механизмов активации онкогенов в процессе развития опухоли, например, онкогена N-myc при развитии нейробластомы. Также амплификация — накопление… Эндонуклеазы — белки из группы нуклеаз, расщепляющие фосфодиэфирные связи в середине полинуклеотидной цепи. Эндонуклеазы рестрикции, или рестриктазы, расщепляют ДНК в определенных местах (так называемых сайтах рестрикции), они подразделяются на три типа (I, II и III) на основании механизма действия. Эти белки часто используют в генной инженерии для создания рекомбинантных ДНК, которые вводят затем в бактериальные, растительные или животные клетки. Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта в зрелую РНК. Эндонуклеазы рестрикции, рестриктазы (от лат. restrictio — ограничение) — группа ферментов, относящихся к классу гидролаз, катализирующих реакцию гидролиза нуклеиновых кислот.

    Упоминания в литературе

    Ориджины репликации являются местом, с которого начинает свое движение репликативная вилка. Но ДНК-полимеразы не могут начать процесс репликации без помощи других белков. Белки, участвующие в распознавании ориджина и спсобствующие привлечению к нему праймазы – РНК-полимеразы, синтезирующей праймер, «затравку» для синтеза ДНК – и ДНК-полимеразы, образуют комплекс инициации репликации.

    Связанные понятия (продолжение)

    Виртуальная полимеразная цепная реакция (ПЦР in silico, цифровая ПЦР, электронная ПЦР, е-ПЦР) — математический метод компьютерного анализа теоретической полимеразной цепной реакции, использующий данные о нуклеотидных последовательностях праймеров (или ДНК-зондов) для предсказания потенциальной амплификации фрагментов исследуемого генома, хромосомы, или любого другого участка ДНК. Репликация по типу катящегося кольца (раскручивающегося рулона) (англ. Rolling circle replication) — процесс однонаправленной репликации нуклеиновой кислоты, в ходе которого быстро синтезируются множественные копии кольцевых молекул ДНК или РНК, например, плазмид, геномов бактериофагов и кольцевых РНК вироидов. Некоторые вирусы эукариот также подвергают свой геном репликации по такому механизму. Секвенирование биополимеров (белков и нуклеиновых кислот — ДНК и РНК) — определение их аминокислотной или нуклеотидной последовательности (от лат. sequentum — последовательность). В результате секвенирования получают формальное описание первичной структуры линейной макромолекулы в виде последовательности мономеров в текстовом виде. Размеры секвенируемых участков ДНК обычно не превышают 100 пар нуклеотидов (next-generation sequencing) и 1000 пар нуклеотидов при секвенировании по Сенгеру. В результате… Дезоксирибонуклеи́но кислота́ (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Комплементарная ДНК (кДНК, англ. сDNA) — это ДНК, синтезированная на матрице зрелой мРНК в реакции, катализируемой обратной транскриптазой. Бисульфи́тное секвени́рование — общее название группы методов, направленных на изучение паттерна метилирования ДНК посредством обработки её бисульфитом. Сайт-специфическая рекомбинация — тип генетической рекомбинации в которой при обмене цепей ДНК происходит реакция между специфическими cайтами Перестановка сегментов ДНК происходит путем распознавания и связывания коротких последовательностей ДНК (сайтов), в которых специальные ферменты расщепляют, переставляют и снова соединяют цепи ДНК. Для одних систем рекомбинации достаточно только фермента рекомбиназы, другие же требуют наличия дополнительных факторов. В природе сайт-специфическая рекомбинация… Ма́тричная рибонуклеи́новая кислота́ (мРНК, синоним — информацио́нная РНК, иРНК) — РНК, содержащая информацию о первичной структуре (аминокислотной последовательности) белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов. Трансля́ция (от лат. translatio — перенос, перемещение) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Экзонуклеазы — белки из группы нуклеаз, отщепляющие концевые мононуклеотиды от полинуклеотидной цепи путём гидролиза фосфодиэфирных связей между нуклеотидами. Нуклеозидтрифосфаты (Nucleoside triphosphate, NTP) — это нуклеозиды с тремя фосфатами. Природные нуклеозидтрифосфаты представлены аденозинтрифосфатом (ATP), гуанозинтрифосфатом (GTP), цитидинтрифосфатом (CTP), тимидинтрифосфатом (TTP) и уридинтрифосфатом (UTP). Данные термины означают, что нуклеотиды содержат сахар рибозу. Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК. Сплайсинг (от англ. splice — сращивать или склеивать концы чего-либо) — процесс вырезания определённых нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании матричной, или информационной, РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие… Сайт рестрикции (участок узнавания) — короткая последовательность нуклеотидов в молекуле ДНК, которая распознаётся ферментом эндонуклеазой рестрикции-модификации (рестриктазой). Рестриктаза связывается с молекулой ДНК в точке расположения сайта рестрикции и перерезает цепочку нуклеотидов внутри сайта или в непосредственной близости от него. Трансля́ция у прокарио́т — процесс синтеза белка на матрице мРНК, происходящий в клетках прокариотических организмов. В отличие от аналогичного процесса у эукариот, в трансляции у прокариот принимает участие рибосома 70S, а первой (инициаторной) аминокислотой выступает формилметионин, а не метионин. Рибосо́ма — важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоят из большой и малой субъединиц. Пэннинг (англ. panning, biopanning) — метод молекулярной биологии для отбора из большого количества сходных биообъектов (пептидов, белков, фагов), названный так по аналогии с промывкой золотоносного песка в лотке (англ. panning), где биообъекты «просеивают» на сорбенте или подложке, содержащих иммобилизованный лиганд. Часто используют для отбора из библиотек биомолекул, которые могут содержать огромное их разнообразие, порядка 1010 различных видов молекул в библиотеке. Репарация ошибочно спаренных нуклеотидов — система обнаружения и репарации вставок, пропусков и ошибочных спариваний нуклеотидов, возникающих в процессе репликации и рекомбинации ДНК, а также в результате некоторых типов повреждений ДНК. Молекулярное распознавание (англ. molecular recognition) — избирательное связывание между двумя или более молекулами за счет нековалентных взаимодействий. Фазмиды (от греч. φάγος — пожирающий и англ. plasmid, от греч. πλάσμα — нечто образованное, сформированное) — молекулярные векторы, являющиеся искусственными гибридами между фагом и плазмидой. Фазмиды после встройки чужеродной ДНК могут в одних условиях развиваться как фаги, а в других как плазмиды. Рибонуклеаза T1 (или РНКаза Т1, RNase T1) это эндонуклеаза (КФ 3.1.27.3), выделенная из грибов, которая разрезает молекулы одноцепочечной РНК после остатков гуанина, то есть, по 3′ концу. Наиболее изученной формой этого фермента является плесневая РНКаза Т1 из Aspergillus oryzae. Пиросеквени́рование — это метод секвенирования ДНК (определение последовательности нуклеотидов в молекуле ДНК), основанный на принципе «секвенирование путём синтеза». При включении нуклеотида происходит детекция высвобождающихся пирофосфатов. Технология была разработана Полом Ниреном (швед. Pål Nyrén) и его студентом Мустафой Ронаги англ. Mostafa Ronaghi) в Королевском технологическом институте (Стокгольм) в 1996 году. Аминоацил-тРНК-синтетаза (АРСаза) — фермент-синтетаза, катализирующий образование аминоацил-тРНК в реакции этерификации определённой аминокислоты с соответствующей ей молекулой тРНК. Для каждой протеиногенной аминокислоты существует своя аминоацил-тРНК-синтетаза. Гисто́ны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация. Существует пять различных типов гистонов h2/Н5, h3A, h3B, h4, h5. Гистоны h3A, h3B, h4, h5, называемые кóровыми гистонами (от англ. core — сердцевина), формируют нуклеосому, представляющую собой белковую глобулу, вокруг которой накручена нить ДНК. Гистон h2/H5, называемый линкерным гистоном… Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут… Система рестрикции-модификации — ферментативная система бактерий, разрушающая попавшую в клетку чужеродную ДНК. Основная её функция — защита клетки от чужеродного генетического материала, например, бактериофагов и плазмид. Для компонентов системы характерны два типа активности — метилтрансферазная (метилазная) и эндонуклеазная. За каждую из них могут отвечать как отдельные белки, так и один белок, сочетающий в себе обе функции.Система рестрикции-модификации (СР-М) специфична по отношению к определённым… Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала внутрь клетки, в том числе в клетку живого многоклеточного организма in vivo. Последовательность Шайна — Дальгарно (англ. Shine-Dalgarno sequence, Shine-Dalgarno box) — сайт связывания рибосом на молекуле мРНК прокариот, обычно на расстоянии около 10 нуклеотидов до стартового кодона AUG. Описана австралийскими учёными Джоном Шайном и Линн Дальгарно.Консенсусом является последовательность из шести нуклеотидов AGGAGG; в случае E. coli последовательность Шайна — Дальгарно — AGGAGGU. Комплементарная последовательность CCUCCU, называемая последовательностью анти-Шайна — Дальгарно… Нуклеи́новая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. ДНК-метилтрансфера́зы (ДНК-метилазы, англ. DNA methyltransferase, DNA MTase, DNMT) — группа ферментов, катализирующих метилирование нуклеотидных остатков в составе ДНК. Активность метилтрансфераз, заключающаяся в переносе метильных (Ch4—) групп на азотистое основание цитозин в составе ДНК, ведет к изменению свойств ДНК, при этом изменяется активность, функции соответствующих генов, а также пространственная структура нуклеиновой кислоты (конформация).

    Подробнее: ДНК-метилтрансфераза

    Откры́тый хромати́н (англ. open chromatin) — небольшие участки хроматина, свободные от нуклеосом. Посадке нуклеосом, как правило, препятствуют связанные с хроматином белковые факторы, узнающие определённые последовательности ДНК. К числу таких белков относятся транскрипционные факторы, ДНК- или РНК-полимеразы. Открытый хроматин часто совпадает с цис-регуляторными последовательностями, а именно: промоторами, энхансерами, инсуляторами, сайленсерами, участками начала репликации ДНК. Размер открытых… Точка начала репликации (англ. origin of replication) — это фрагмент молекулы нуклеиновой кислоты, с которого начинается её репликация. Структура точки начала репликации (нуклеотидная последовательность) отличается у разных видов, но у всех организмов это АТ-богатая и потому легкоплавкая последовательность. Точка начала репликации и прилегающие к ней фрагменты нуклеиновой кислоты, не отделённые сайтами терминации, составляют единицу репликации — репликон. Репликация ДНК может начинаться от точки… Убиквити́н (от англ. ubiquitous — «вездесущий») — небольшой (8,5 кДа) консервативный белок эукариот, участвующий в регуляции процессов внутриклеточной деградации других белков, а также в модификации их функций. Он присутствует почти во всех тканях многоклеточных эукариот, а также у одноклеточных эукариотических организмов. Убиквитин был открыт в 1975 году Гидеоном Голдштейном с соавторами и охарактеризован в 70—80-х годах XX века. В геноме человека есть четыре гена, кодирующих убиквитин: UBB, UBC… Комплемента́рность (в химии, молекулярной биологии и генетике) — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий (образование водородных связей, гидрофобных взаимодействий, электростатических взаимодействий заряженных функциональных групп и т. п.). Гомеодомен — это структурный домен белков, связывающих ДНК или РНК, широко распространенный среди факторов транскрипции. Домен состоит из 60 остатков аминокислот, и образует структуру спираль-поворот-спираль, в которой альфа-спирали связаны короткими петлевыми участками. Две спирали на N-конце являются антипараллельными, и длиннее спирали на C-конце, которая перпендикулярна осям N-концевым петлям. Непосредственно С-концевая спираль взаимодействует с ДНК. Укладка доменов белков по типу гомеодомена… Плазми́ды (англ. plasmids) — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот (грибов и высших растений). Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов. Искусственная бактериальная хромосома (англ. bacterial artificial chromosome, BAC) — векторная система на основе F-плазмиды E. coli, участков cos фага лямбда и loxP фага Р1, используемая для клонирования длинных (150—350 тыс. п.н.) последовательностей ДНК. F-плазмида кодирует гены, регулирующие репликацию и контролирующие копийность (1—2 молекулы на клетку). По участку loxP плазмидная ДНК может быть расщеплена белком Cre фага Р1, по cos-участку — соответствующим ферментом фага лямбда. Схожая векторная… Рибонуклеа́за А — фермент, относящийся к группе эндонуклеаз, который гидролизует фосфодиэфирные связи в одноцепочечных РНК. Космиды (Cosmides) — плазмиды, содержащие фрагмент ДНК фага лямбда включая cos-участок. Вместе с системами упаковки в фаговые частицы in vitro используются как векторные молекулы для клонирования генов и при построении геномных библиотек. Космиды были впервые сконструированы Коллинсом и Брюнингом в 1978 году. Их название происходит от сокращения двух терминов: cos-участок (сам термин в свою очередь происходит от англ. cohesive ends — липкие концы) и плазмида. Иммунопреципита́ция — метод выделения белка из сложных смесей, таких как клеточные лизаты, сыворотки и тканевые гомогенаты, при помощи специфичных к белку антител. Иммунопреципитация позволяет детектировать изменения экспрессии белка, характеризовать белки, с которыми исследуемый белок образует комплекс, выявлять сайты связывания белка с нуклеиновыми кислотами. Нуклеоти́ды (нуклеозидфосфаты) — группа органических соединений, представляют собой фосфорные эфиры нуклеозидов. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов. В биохимии, димер — макромолекулярный комплекс, образованный двумя, как правило, не ковалентносвязаными макромолекулами, такими как белки или нуклеиновые кислоты. Белковый димер — это четвертичная структура белка. Биосинтез белка — это многостадийный процесс синтеза и созревания белков, протекающий в живых организмах. В биосинтезе белка выделяют два основных этапа: синтез полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК (трансляция), и посттрансляционные модификации полипептидной цепи. Процесс биосинтеза белка требует значительных затрат энергии.
    учебное пособие. Глава 4. Механизм образования и необходимость РНК-праймера (И. М. Спивак, 2011)

    Многие известные теперь детали процесса репликации ДНК удалось установить благодаря исследованию поведения и активности ферментов, обеспечивающих работу аппарата репликации. Наиболее полно изучен механизм репликации бактериальной ДНК, особенно ДНК Е. соli и бактериофагов, которые в ней размножаются. Довольно хорошо известны и ферменты репликации дрожжей, Drosophila, млекопитающих.

    4.3.1. ДНК-полимеразы

    ДНК-подимсразы присутствуют во всех прокариотических и эукариотических клетках. Более того, многие вирусы бактерий и животных индуцируют образование вирус-специфических ДНК-полимераз или белков, способствующих эффективному участию ДНК-полимераз клеток-хозяев в репликации вирусной ДНК.

    Многие прокариотические и эукариотические ДНК-полимеразы выделены в чистом виде, а их физические и ферментативные свойства детально охарактеризованы. И хотя эти свойства не совсем идентичны, механизм катализа для всех указанных ферментов в общих чертах одинаков.

    Рис. 11. Общий принцип строения ДНК-полимераз.

    В первичной структуре ДНК-полимераз эукариот присутствуют консервативные мотивы, гомологичные соответствующим мотивам прокариотических ферментов. Это подтверждает, что все ДНК-синтезирующие ферменты имеют общий план строения. Общий принцип строения ДНК-полимераз показан на рис. 11. По форме ДНК-полимсразы можно уподобить полураскрытой кисти правой руки, в которой ладонь, большой палец и остальные пальцы представляют три основных пространственных домена и формируют полость, удерживающую ДНК-матрицу и затравку в ходе синтеза. Консервативные мотивы А, В и С образуют активный центр в домене «ладони», «пальцы» удерживают однонитевую матрицу, а «большой палец» прижимает праймер – матричный двунитевой участок.

    Применительно к различным типам ДНК-полимераз эукариот эта модель может быть модифицирована. ДНК-полимеразы работают совместно с различными белковыми комплексами, удерживающими их в вилке репликации. Чаще всего их называют «зажим» и «загрузчик зажима» («sliding clamp», «clamp loader»).

    Рис. 12. Загрузка ДНК-полимеразы

    После объединения ДНК-полимеразы с зажимом, «загрузчик зажима» отходит от места реакции, но держится поближе к отстающей нити, чтобы провести загрузку на новом месте объединения праймер-матрица, как только ДНК-полимераза диссоциирует при завершении синтеза предыдущего фрагмента Оказаки. Этот процесс схематически изображен на рис. 12. Подробно об этих комплексах у эукариот и их роли в репликации будет рассказано далее.

    4.3.1.1. ДНК-полимеразы прокариот

    Полимеразы прокариот обозначаются римскими цифрами (в отличие от полимераз эукариот, которые обозначаются греческими буквами). Наиболее полно изучена ДНК-полимераза I (Ро11) Е. соli. Она представляет собой одиночный полипептид с мультифуикциональными активностями. В качестве ДНК-полимеразы Ро11 катализирует перенос 5′-дезоксинуклеотидильных единиц дезоксинуклеозид-5′-трифосфатов к З’-ОН-группе в цепи ДНК или РНК, после чего происходит спаривание перенесенного основания с соответствующим основанием комплементарной цепи ДНК. Таким образом, для полимеризации ферменту необходимы праймер в качестве акцептора дезоксинуклеотида и матрица, определяющая присоединение нужного нуклеотида. Помимо полимеризации нуклеотидов, Ро11 катализирует две другие реакции, биологическая роль которых очень важна. В одной из них происходит гидролиз фосфодиэфирных связей в одной цепи ДНК или на неспаренном конце дуплексной ДНК, причем за один акт удаляется один нуклеотид, начиная с 3′-конца цепи (3′-5′-экзонуклеаза). Вторая реакция также состоит в отщеплении нуклеотидов, но гидролиз начинается с 5′-конца двунитевой ДНК в направлении к 3′-концу (5′-3′-экзонуклеаза). Эти различные активности присущи разным сайтам полипептидиой цепи РоlI, Если in vitro обработать РоlI трипсином, то полипептидная цепь расщепится на большой и малый фрагменты. Большой, С-концевой фрагмент («фрагмент Кленова») сохраняет ДНК-полимеразную и 3′ -5′-экзонуклеазную активности; малый N-концевой фрагмент обладает только 5′-3′-экзонуклеазной активностью.

    РоlI и присущие ей экзонуклеазные активности играют очень большую роль в репликации и репарации хромосомной ДНК Е. соli. 3’-5′-экзонуклеазная активность обеспечивает контроль за присоединением каждого нуклеотида и удаление ошибочных нуклеотидов вновь синтезированной цепи. Если эта активность подавлена в результате каких-то мутаций в гене, кодирующем РоlI, то при репликации генома часто происходят мутации – замены оснований.

    Способность ДНК-полимеразы удлинять 3′-конец нити, спаренной с матричной нитью, позволяет ей заполнять пробелы между сегментами отстающей нити. РоlI удлиняет фрагменты Оказаки с 3′-концов и удаляет рибонуклеотиды праймера, с которых начинаются 5′-концы соседних фрагментов, что является необходимой предпосылкой для формирования непрерывной отстающей цепи. Поскольку РоlI способна удлинять 3′-конец одной из цепей в месте разрыва в двунитевой ДНК и удалять нуклеотиды с 5′-конца того же разрыва (процесс, называемый ник-трансляцией), этот фермент играет ключевую роль в репарации поврежденной ДНК. Ник-трансляция широко используется in vitro для синтеза радиоактивно меченой ДНК.

    У Е. соli имеются и две другие ДНК-полимеразы, но они присутствуют в клетке в меньших количествах. РоlII присоединяет нуклеотиды значительно менее эффективно, чем Ро11, и не обладает 5′-З’-экзонуклеазной активностью. Следовательно, РоlII может заполнять пробелы между фрагментами ДНК, спаренными с матричной цепью, но не способна отщеплять РНК-нуклеотиды от фрагментов Оказаки или осуществлять ник-трансляцию. Роль РоlII в репликации и сохранении хромосомной ДНК Е. соli до настоящего момента неясна. Вероятно, она может участвовать в восстановлении синтеза ДНК после повреждения и остановки вилки репликации. Такой процесс принято называть ресинтезом.

    PolIII-холофермент – это ключевой фермент, ответственный за репликацию хромосомной ДНК Е. соli. В каждой клетке содержится только 10–20 копий PolIII – холофермента, но именно он является основным компонентом мультиферментного полимеразного комплекса, инициирующего формирование репликативных вилок в точках начала репликации, участвующего в элонгации лидирующей цепи в вилке и удлиняющего РНК-праймеры с образованием фрагментов Оказаки. Так как PolIII – холофермент не обладает 5′-3′-экзонуклеазной активностью, для репликации отстающей цепи необходимо участие РоlI, чтобы произошло удлинение продукта, образовавшегося при участии PolIII, и удаление РНК-праймеров на 5′-конце фрагментов Оказаки.

    Методом направленного мутационного анализа обнаружены изменения в полипептидной цепи основного (кор) фермента PolIII, и изучены аминокислотные замены, которые позволяют приписать определенные виды ферментативной активности конкретным субъединицам ферментного комплекса. Так, α-субъединица обладает полимеразной активностью, а ε-субъединица – 3′ 5′-экзонуклеазной. Однако комплекс α– и ε-субъединиц обладает значительно более высокой полимеразной и экзонуклеазной активностями, чем каждая из соответствующих субъединиц в отдельности. Функция третьей, θ-субъединицы пока неясна.

    Помимо субъединиц, составляющих PolIII – кор, PolIII-холофермент содержит еще семь субъединиц: τ,γ,β,δ,δ’,χ, и ψ. Перечисленные полипепгиды также существуют во множестве копий, так что в результате мол. масса полимеразного комплекса составляет примерно 103 кДа. Роль β-субъединицы заключается в том, чтобы свести к минимуму вероятность отделения фермента от матрицы до завершения процесса копирования, то есть работает как «зажим». Субъединица τ является фактором димеризации репликативных холоферментов. Точная же функция других субъединиц неизвестна. Вполне возможно, что PolIII-холофермент существует в двух формах, каждая из которых содержит определенный набор вспомогательных субъединиц, придающих ферменту определенные свойства. В одной форме фермент катализирует синтез непрерывной ведущей цепи, а в другой – прерывистой отстающей.

    PolIII-холофермент катализирует же реакции синтеза, что и PolI, но работает примерно в 60 раз быстрее. Более того, PolIII-холофермент обладает повышенным сродством к матрице и обеспечивает более высокую эффективность копирования. PolIII-холофермент может связываться и с другими белками, увеличивая эффективность процесса копирования благодаря координации некоторых важных ферментативных этапов репликации. На этом более высоком уровне организации в комплексы могут включаться белки, расплетающие спираль ДНК в точках начала репликации и в репликативных вилках (геликазы), инициирующие образование праймерных РНК (праймазы), обеспечивающие последовательное наращивание цепей ДНК, терминирующие процесс репликации и разделяющие дочерние спирали ДНК.

    ДНК-полимеразы, синтезируемые другими бактериями и многими бактериофагами, различаются по своим физической структуре и свойствам. Тем не менее, катализируемые ими реакции практически идентичны реакциям, изученным у Е. соli. У всех ДНК-полимераз есть корректирующая 3′-5′-экзонуклеаза, однако 5′-3′-экзонуклеаза у большинства ферментов отсутствует. Например, ДНК-полимераза фага Т4 может осуществлять 3′-5′-экзонуклеазную реакцию и корректировать ошибки репликации, но не способна катализировать 5’– З’-экзонуклеазную реакцию и поэтому не может обеспечить ник-трансляцию. При репликации ДНК фага Т4 5′-3′-экзонуклеазную реакцию удаления РНК-праймеров перед объединением фрагментов Оказаки катализирует другой кодируемый фагом белок. В процессе прерывистого синтеза отстающих нитей и репарации повреждений ДНК фага Т4 этот фермент работает согласованно с фаговой ДНК-полимеразой. Некоторые вирусы животных (например, герпесвирус, вирус коровьей оспы и вирус гепатита) индуцируют синтез особых полимераз для репликации своих геномов.

    Другие вирусы образуют белки, которые стимулируют системы репликации клеточной ДНК или участвуют в репликации вирусной ДНК. Например, паповавирусы синтезируют белки, необходимые для инициации репликации. Аденовирусы человека кодируют белки, «запускающие» инициацию синтеза обеих цепей линейной вирусной ДНК. Они продуцируют также особые ДНК-связывающие белки, облегчающие репликацию.

    4.3.1.2. ДНК-полимеразы эукариот

    В эукариотических клетках идентифицировано множество ДНК-полимераз, но их физические и функциональные свойства изучены менее детально, чем у соответствующих ферментов прокариот.

    Таблица 3

    ДНК-полимеразы эукариот

    Точная пространственная структура, определенная с помощью рентгеноструктурного анализа, известна лишь для одной ДНК-полимеразы эукариот – полимеразы β-типа, которая заметно отличается по строению от других эукариотических ДНК-полимераз. Сводные данные об основных полимеразах эукариот приведены в таблице 3.

    4.3.1.3. ДНК-полимераза α – праймаза

    В клетках эукариот синтез ДНК происходит, в основном, в специфических плотных структурах («репликативных фабриках»), присоединенных к диффузному ядерному матриксу. Предполагается, что в молекулярной организации ядерного матрикса играют некоторую роль фосфолипиды и что ДНК связана с ядерным скелетом гидрофобными взаимодействиями. «Репликативные фабрики» или 21S репликативные комплексы, включают в себя группу ферментов, состоящую не менее чем из 30 белков с молекулярной массой от 15 до 300 кДа, и содержат помимо ДНК-полимеразы α – праймазы еще и 3′-5′-экзонуклеазу, ДНК-лигазу I, РНКазу Н, ДНК-топоизомеразу I, ДНК-геликазу, РСNA и ряд других факторов. Также этот комплекс содержит RРА, специфически взаимодействующий с субъединицей р48 комплекса полимераза-праймаза. Значительный запас ДНК-полимеразы α накапливается в яйцеклетках иглокожих, амфибий, костистых рыб и дрозофилы для обеспечения интенсивной репликации ядерной ДНК в ходе раннего развития.

    Как правило, ДНК-полимеразы α не обладают корректорской 3’—5′-экзонуклеазной активностью. Однако в каталитической субъединице 182 кДа ДНК-полимеразы α дрозофилы обнаружена 3’—5′-экзонуклеаза, проявляющая активность только при диссоциации субъединицы 73 кДа.

    Мультибелковая форма ДНК-полимеразы α содержит также белок, который связывает динуклеотид диаденозинтетрафосфат (Ар4А). Предполагается, что Ар4А участвует в репликации ДНК и клеточном делении. Имеются данные о способности ДНК-полимеразы α использовать Ар4А в качестве праймера. Однако участие Ар4А в качестве праймера in vivo маловероятно, скорее он используется как эффектор. Интересно, что триптофанил-тРНК-синтетаза, синтезирующая этот динуклеотид, находится в том же мултибелковом комплексе.

    Обычно комплекс праймаза-полимераза α состоит из четырех субъединиц: большой субъединицы с молекулярной массой 180 кДа, или семейства полипептидов с размерами от 140 до 160 кДа; субъединицы с молекулярной массой около 68–70 кДа и двух малых субъединиц с молекулярными массами 54–58 и 46–50 кДа. Субъединица р180 отвечает за полимеразную функцию. С двумя малыми субъединицами связана праймазная активность. При этом субъединица 48 кДа является каталитической и непосредственно осуществляет праймирование ДНК, а субъединица 58 кДа участвует в связывании инициирующего пуринового нуклеотида и присоединении субъединицы р48 к ДНК-полимеразе α. Она также влияет на скорость полимеризации и стабильность продукта, синтезируемого субъединицей 48 кДа. р58 также облегчает проникновение р48 из цитоплазмы в ядро. Субъединица р180 непосредственно взаимодействует с р58.

    С каталитической субъединицей связана субъединица 68–70 кДа, которая необходима для транспорта каталитического полипептида в клеточное ядро. Субъединица 68–70 кДа участвует также в регуляции уровня ДНК-полимеразы α в клетке, она стимулирует синтез каталитического полипептида. Хотя комплекс ДНК-полимераза α-праймаза состоит из четырех субъединиц, количественный состав этого комплекса может быть различным. Вероятно, полимераза α и праймаза находятся в «коре» в соотношении 1: 3.

    4.3.1.4. Реакция праймирования

    Инициация репликации и прерывистый синтез ДНК на отстающей цепи происходит по РНК-праймерному механизму и является универсальным свойством репликации ДНК у про– и эукариот.

    ДНК-праймаза отличается от других РНК-полимераз целым рядом присущих только ей свойств. Во-первых, матричной и субстратной специфичностью. Во-вторых, необычной процессивностью – синтезом мультимеров, кратных 10-нуклеотидным звеньям. В-третьих, низкой точностью и устойчивостью к некоторым ингибиторам РНК– и ДНК-полимераз. Здесь необходимо вернуться к проблеме синтеза РНК-праймеров. Синтез РНК-праймеров на природных матрицах начинается во множественных, но не случайных участках, его инициация происходит с АТР или GТР даже при высоких концентрациях СТР и UTР. Показано, что, например, ДНК вируса SV40 содержат предпочтительные участки инициации – 3′-dСТТТ или 3′-dССС, расположенные внутри участков из 7-25 пиримидиновых нуклеотидов. Высокое соотношение АТР/GТР повышает вероятность инициации в участках 3′-dСТТТ, а низкое – в участках 3′-dССС. Таким образом, концентрация NТР и нуклеотидная последовательность матрицы определяют участки инициации. Впрочем, участки инициации in vivo заметно отличаются от участков инициации, используемых во время репликации ДНК SV40. Во многих случаях обнаружена последовательность 5′-YYYYYYYYСТТТYYYY-3′, где Y = С или Т, которая является стартовой площадкой для инициации синтеза ДНК-праймазой в составе комплекса с ДНК-полимеразой α. Минимальная длина пиримидинового кластера должна быть не менее 7 н. Замена одного из пиримидинов на 3′-конце кластера значительно понижает частоту инициации, а замены внутри и вне кластера приводят к смещению точки старта. Известно, что матрицу распознает сама ДНК-праймаза. Стартовый нуклеотид вновь синтезированного праймера всегда является пурином (чаще всего – аденином).

    Этот комплекс имеет еще одну специфическую функцию – синтез теломерной отстающей цепи ДНК млекопитающих осуществляет ДНК-полимераза α-праймаза.

    ДНК-праймаза – сравнительно медленный фермент. Средняя скорость включения NTP этим ферментом примерно на два порядка меньше, чем скорость включения dNТР ДНК-полимеразой α. ДНК-полимераза α способна удлинять праймеры длиной более 7-10 н. Продукты длиной 2–6 н. не являются субстратами ДНК-полимеразы α и называются абортивными, До синтеза РНК-праймера ДНК-полимераза α и ДНК-праймаза действуют независимо, а после этого их активности координируются. Синтезированный РНК-праймер перемещается в полимеразный активный центр без диссоциации в раствор. Это внутримолекулярное перемещение праймера в дуплексе с матрицей является быстрым и сравнимо по скорости с синтезом праймера. После того как ДНК-полимераза α удлинит праймер, праймаза начинает синтез нового праймера, и цикл повторяется. ДНК-праймаза эукариот отличается от других РНК-полимераз своей способностью к включению дезоксирибонуклеотида в праймер, таким же свойством обладает и праймаза прокариот. Одним из возможных объяснений необходимости включения dNТР в 3′-конец праймера является необходимость перехода от А-формы к В-форме ДНК. Поэтому понимание механизма «переключения» комплекса ДНК-полимеразы α-праймазы от синтеза РНК к ДНК имеет очень большое значение. Способность праймазы узнавать одновременно и рибо-, и дезоксириботрифосфаты представляет серьезный научный интерес.

    Выбор РНК-праймера определяется гидрофобным характером белково-нуклеиновых взаимодействий. В случае гибрида РНК-ДНК дуплекс находится в А-форме, в которой обеспечивается оптимальный баланс между гидрофобными и комплементарными взаимодействиями оснований матрицы и праймера.

    После инициации рост праймера сопровождается извлечением оснований матрицы из гидрофобной полости белка для спаривания с основаниями растущей цепи РНК. В условиях такой конкуренции короткие ди– и тринуклеотиды легко диссоциируют, образуя абортивные продукты. С ростом длины праймера прочность дуплекса увеличивается, ослабевает влияние гидрофобности активного центра, и пары оснований приближаются к оси спирали. При длине праймера 7 н создаются условия для включения дезоксинуклеотида и перехода в энергетически более выгодную В-форму. Здесь нужно учитывать и большее сродство к ферменту dNТР по сравнению с NТР. Предложенная концепция, по-видимому, носит универсальный характер, поскольку подобное происходит и при инициации транскрипции.

    ДНК-полимераза α связывает сначала матрицу, затем праймер и субстрат. ДНК-полимераза α наиболее активна на двунитевой ДНК, содержащей бреши длиной не менее 20–30 н. Область связывания матрицы с ДНК-полимеразой α является достаточно протяженной. Она строго защищает от гидролиза 9 н праймерной цепи, 13 н двухцепочечного участка и 14 н одноцепочечной матрицы и слабо защищает несколько оснований вне этого района. Фермент связывается с 19–20 н матрицы посредством ионных и гидрофобных взаимодействий, эффективность связывания при этом коррелирует с гидрофобностью оснований матрицы.

    Отличительной особенностью ДНК-полимеразы α является ее способность удлинять РНК-праймеры и прочная ассоциация с ДНК-праймазой, которая синтезирует эти праймеры.

    Средняя процессивность ДНК-полимеразы α составляет 20–50 н. Праймаза редко ошибается в момент синтеза динуклеотида, но затем легко использует неправильные NТР. Хотя скорость включения ошибочных нуклеотидов зависит от нуклеотидной последовательности матрицы и самого неправильного нуклеотида, в принципе, ДНК-праймаза является самым неточным нуклеотид-полимеризующим ферментом. В некоторых случаях один неправильный нуклеотид приходится менее чем на 100 правильных. Встраивание неправильного нуклеотида не препятствует включению следующего правильного нуклеотида. Праймаза может полимеризовать сходные нуклеотиды и генерировать праймеры с множественными ошибками, котрые не ингибируют дальнейший синтез и после внутримолекулярного переноса в ДНК-полимеразный активный центр удлиняются ДНК-полимеразой в присутствии dNTP.

    Существуют две модели механизма синтеза праймеров, некомплементарных матрице. Согласно первой модели, фермент просто включает некомплементарные матрице нуклеотиды. Вторая модель предполагает включение нуклеотида, комплементарного матрице, с последующим скольжением праймера относительно матрицы. Низкая точность ДНК-праймазы послужила основой гипотезы о том, почему именно РНК является затравкой при репликации ДНК. Поскольку первые нуклеотиды могут ошибочно включаться в новую растущую цепь, предполагается, что РНК-праймер отмечает «высокоошибочный» участок для последующего вырезания и более точной застройки. Эта точка зрения выглядит убедительной, но, вероятно, главная причина появления РНК-праймера связана все-таки с более эффективной инициацией синтеза ДНК при наличии А-формы РНК-ДНК дуплекса.

    Конец ознакомительного фрагмента.

    Полимеразная цепная реакция – руководство для начинающих

    ПЦР — это метод современных лабораторий молекулярной биологии. Если вам нужно скопировать, упорядочить или количественно определить ДНК, вам необходимо знать ПЦР. Короче говоря, полимеразная цепная реакция — это биохимический метод, использующий термоциклирование и ферменты для быстрого и надежного копирования ДНК.

    Эта статья дает краткий, базовый обзор ПЦР с несколькими советами, которые помогут вам избежать наиболее распространенных ошибок. Если вы новичок или имеете мало опыта в проведении ПЦР, то статья для вас. И даже если у вас есть опыт в ПЦР, стоит его немного освежить, и, возможно, получить один или два полезных совета.

    Основные ингредиенты ПЦР:

    Полимераза

    Полимераза — это фермент, который при правильных условиях может собирать новые цепи ДНК из матричной ДНК и нуклеотидов. Первоначальная реакция ПЦР была громоздкой, потому что высокие температуры, необходимые для денатурации ДНК, разрушали полимеразу. Это означало, что после каждого цикла нагревания новые полимеразы необходимо было добавлять в реакцию вручную — дорогостоящее мероприятие. Эта проблема решена в современных методах, так как полимеразы, используемые в современной ПЦР, обычно происходят из одного из двух термофильных источников, бактерий Thermus aquaticus или Pyrococcus furiosus. Эти полимеразы, соответственно, Taq (произносится «липкость») и Pfu (произносится «PFU»), легко выдерживают высокие температуры. Коммерческие полимеразы Taq и Pfu спроектированы с учетом скорости, точности, способность завершать длительное чтение и читать шаблоны, богатые GC. Компании постоянно выпускают новые полимеразы. Поэтому не соглашайтесь на то, «что находится в вашем морозильнике», а ищите лучшую коммерческую полимеразу для ваших нужд. Также поговорите со своим местным торговым представителем, поскольку он часто может раздавать бесплатные образцы полимеразы, чтобы вы могли решить, что лучше для вас.

    Шаблон ДНК

    Это ДНК, для которой вы разрабатываете свои праймеры. Это ДНК, которую ваша полимераза будет читать и копировать. Ваша шаблонная ДНК может быть геномной, плазмидной или кДНК. Чем более целостная и чистая ваша матричная ДНК, тем легче получить хорошие результаты ПЦР. Также имейте в виду, что идеальное количество ДНК будет зависеть от вашего источника, обычно 1 пг — 1 нг плазмидной ДНК или 1 нг — 1 мкг геномной ДНК на реакцию ПЦР.

    Праймеры

    Праймеры — это короткие фрагменты синтезированной ДНК, которые связываются с вашей шаблонной ДНК. Вам нужно будет разработать один «прямой» праймер и один «обратный». Прямой праймер обозначает начало вашей ПЦР. Последовательность этого праймера такая же, как у вашей ДНК-матрицы 5´-3´. Обратный праймер обозначает конец вашей ПЦР. Последовательность этого праймера является обратно комплементарной ДНК вашего шаблона. Обычно праймеры имеют длину 18-22 пары оснований. Однако важнее, чем их длина, является температура плавления ваших: она должна быть 54-60 ° С и максимально совпадать для обоих праймеров. Существует множество онлайн-калькуляторов, которые могут рассчитывать температуры отжига праймеров, и большинство компаний, которые синтезируют праймеры, предоставляют такие калькуляторы.

    Нуклеотиды

    Как мономеры ДНК, нуклеотиды необходимы для создания копий. В большинстве экспериментов вы будете использовать дезоксинуклеозидтрифосфаты (dNTP). Вы можете купить их отдельно или в виде смеси dGTP, dCTP, dATP и dTTP. Что бы вы ни покупали, имейте в виду, что нуклеотиды очень чувствительны к циклам замораживания и оттаивания. Поэтому лучше всегда создавать небольшие аликвоты ваших dNTP. Также убедитесь, что вы храните их правильно — не используйте морозильную камеру, которая проходит автоматические циклы размораживания.

    Буфер

    Большинство коммерческих полимераз поставляются с идеально подобранным  буфером, который обеспечивает не только правильный рН, но и всегда содержит добавки, такие как магний, калий или ДМСО, которые помогают оптимизировать денатурирование, ренатурирование и полимеразную активность ДНК.

    Термоциклирование

    Вот где происходит волшебство. Все вышеперечисленные ингредиенты добавляют в пробирку для ПЦР, которую затем термоциклируют. При изобретении ПЦР отдельные пробирки вручную перемещали между водяными банями с подогревом. Теперь, благодаря изобретению термоциклеров (или амплификаторов), регулирование температуры осуществляется автоматически. Ниже приведен типичный алгоритм работы амплификатора ПЦР:

    1. Инициализация

    На этом этапе реакцию нагревают до 94-96°С в течение от 30 секунд до нескольких минут. Этот шаг обычно выполняется только один раз в самом начале реакции. Этот шаг важен для активации полимераз горячего старта, если вы используете такую ​​полимеразу, и для денатурации вашей шаблонной ДНК.

    1. Денатурация (повторяется 15-40 раз)

    На этом этапе смесь нагревают до 94-98°С в течение 15-30 секунд. Этот шаг денатурирует вашу ДНК и праймеры, что позволит им отжигать друг друга на следующем шаге.

    1. Отжиг (повторяется 15-40 раз)

    На этом этапе температура вашей реакции быстро понижается до 50-64°C в течение 20-40 секунд. Температура на этом этапе должна быть достаточно низкой, чтобы ваши денатурированные праймеры могли образовывать пары оснований с вашей шаблонной ДНК. Но достаточно высокой, чтобы могли образовываться только самые стабильные (идеально спаренные) двухцепочечные структуры ДНК. Обычно эта идеальная температура отжига на несколько градусов ниже чем температура плавления вашей пары праймеров. Также на этом этапе ваша полимераза будет связываться с вашим комплексом ДНК праймер / матрица. Полимераза не начнет чтение, пока температура не повысится на следующем шаге. 

    1. Удлинение или элонгация (повторяется 15-40 раз)

    На этом этапе реакционная смесь быстро нагревается до 72-80°C. В этот момент полимераза начинает чтение в направлении 5´-3´ и копировать ДНК шаблона в направлении 3´-5´. Более высокая температура на этом этапе уменьшает неспецифические взаимодействия ДНК праймера / матрицы, тем самым увеличивая специфичность реакции. Тем не менее, точная температура будет зависеть от предпочтения вашей полимеразы, поэтому перед экспериментом обязательно прочитайте инструкцию. Длина этого шага зависит от того, как долго будет длиться процесс копирования. Как правило, ДНК-полимераза может копировать 1000 пар оснований в минуту. Поэтому вам нужно выдержать смесь как минимум 1 минуту для копирования 1000 пар оснований. В конце инкубации будут созданы новые двухцепочечные фрагменты ДНК, состоящие как из матрицы, так и из новой ДНК.

    Затем шаги 2-4 повторяют 15-40 раз

    Чем больше циклов вы проведете, тем больше копий ДНК вы получите. Тем не менее, есть верхний предел. В какой-то момент доступные свободные нуклеотиды становятся ограничивающими, и преждевременно усеченные копии ДНК могут стать проблемой. Так что не жадничайте. Лучше получить меньше чистого продукта ПЦР, нежели большое количество сильно загрязненного.

    1. Окончательное удлинение

    Это необязательный, но часто рекомендуемый шаг. На этом этапе реакцию проводят при 70-74°С в течение нескольких минут. Обычно вы будете использовать ту же температуру, что и на шаге элонгации. Этот шаг позволяет полимеразам завершить считывание того участка, на котором они находятся в данный момент. Этот необязательный шаг может помочь уменьшить количество усеченных копий в конечном продукте.

    1. Финальная задержка

    Ваша реакция теперь завершена. Поскольку весь процесс может занять несколько часов, реакции ПЦР часто проводят в течение ночи. Рекомендуется запрограммировать ваш термоциклер на хранение продукта ПЦР при температуре 4°С до вашего возвращения. Советуем также прочесть статью о том, как провести ПЦР за 30 минут В это время вы можете проанализировать или использовать свой продукт, или перенести его в более подходящее долговременное хранилище, например, в холодильник.

    Удачи и счастливого ПЦР!

     

    Праймер (молекулярна біологія) — Вікіпедія

    Матеріал з Вікіпедії — вільної енциклопедії.

    Праймер — короткий фрагмент нуклеїнової кислоти або пов’язана молекула, що служить початковим пунктом реплікації ДНК. Праймер потрібний через те, що жодна ДНК-полімераза (фермент, який каталізує реплікацію ДНК) не може почати синтез нової молекули ДНК з одноланцюгової матриці, оскільки їй потрібна дволанцюгова ділянка для приєднання до ДНК, а також вони здатні лише приєднувати нуклеотид до вже наявної -ОН групи на 3′-кінці іншого нуклеотиду.

    У природній реплікації ДНК, як праймери використовуються короткі ланцюжки РНК довжиною близько 12 нуклеотидів, що синтезуються ферментом праймазою. Праймаза може приєднувати як рибонулеотиди, так і дезоксирибонуклеотиди, але синтезує саме фрагмент РНК, оскільки рибонуклеотидів у ядрі більше. Ці молекули РНК пізніше вилучаються та замінюються на ДНК ДНК-полімеразою.

    Багато лабораторних методів біохімії і молекулярної біології, що залучають використання ДНК-полімерази, наприклад секвенування ДНК і полімеразна ланцюгова реакція (ПЛР), вимагають праймерів. Праймери, що використовуються в цих методах, зазвичай короткі, хімічно синтезовані молекули ДНК довжиною 20-30 основ.

    Для ПЛР використовують 2 праймери, які обмежують з двох боків послідовність, що розмножується. Для підвищення специфічності реакції обирають праймери довжиною 20-30 нуклеотидів, із вмістом Г-Ц пар близько 50-60%. Г-Ц пари з’єднані між собою трьома водневими зв’язками, тому вони гарантують кращий і більш вибірковий зв’язок між праймером і матрицею. Для того, щоб послідовність праймерів була унікальна і зв’язувалась тільки з однією матрицею у суміші різних молекул ДНК (наприклад, суміш всіх ДНК людини), існують спеціальні програми, які за допомогою баз послідовностей ДНК підбирають потрібну послідовність нуклеотидів праймеру.[1]

    Для клонування послідовностей ДНК часто у послідовності праймерів уводять додаткові нуклеотиди — сайти рестрикції, по яким ріжуть ферменти рестриктази. Після примноження потрібної ділянки ДНК у ПЛР, отримані молекули змішують з ферментом, який розрізає їх, утворюючи на кінцях так звані «липкі кінці». Такі кінці дозволяють легко вставити продукт ПЛР до штучного ДНК-вектора.

    праймер — это… Что такое праймер?

  • Праймер — получить на Академике действующий промокод Косметика Проф или выгодно праймер купить со скидкой на распродаже в Косметика Проф

  • Праймер — (англ. primer)  это короткий фрагмент нуклеиновой кислоты (олигонуклеотид), комплементарный ДНК или РНК мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК полимеразы, а также при репликации ДНК. Затравка необходима… …   Википедия

  • праймер — сущ., кол во синонимов: 1 • феромон (16) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • ПРАЙМЕР — (англ. primer), феромон, действие которого проявляется не сразу, а через определенный и необходимый промежуток времени (например, “царское вещество” пчел). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… …   Экологический словарь

  • праймер — Короткая последовательность молекулы ДНК, использующаяся для инициации синтеза специфического фрагмента при полимеразной цепной реакции [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN primer …   Справочник технического переводчика

  • Праймер — специальный дисперсионный лак, при помощи которого покрывают запечатанные слои обычных (традиционных) масляных офсетных красок, если предполагается нанести на слой этих красок слой УФ лака. П. служит буфером и разделяет слой краски от слоя лака,… …   Реклама и полиграфия

  • праймер — poklijai statusas T sritis chemija apibrėžtis Suklijavimą gerinantis gruntas. atitikmenys: angl. primer rus. адгезионный грунт; праймер …   Chemijos terminų aiškinamasis žodynas

  • праймер — pradmuo statusas T sritis chemija apibrėžtis Oligomeras, įeinantis į biopolimero sudėtį ir būtinas jo sintezei. atitikmenys: angl. primer rus. затравка; праймер …   Chemijos terminų aiškinamasis žodynas

  • праймеріз — множинний іменник первинні вибори партійних кандидатів у США …   Орфографічний словник української мови

  • Праймер произвольный — * праймер адвольны * arbitrary primer короткий олигонуклеотидный праймер, используемый в определенных ПЦР методах для инициации синтеза ДНК в случайных (произвольных) участках взятой для эксперимента ДНК мишени …   Генетика. Энциклопедический словарь

  • Праймер затравка — Праймер, затравка * праймер, затраўка * primer короткий олигонуклеотид ДНК или РНК, комплементарный участку более длинной молекулы ДНК или РНК. К его 31 OH концу ДНК полимераза (см.) может добавлять нуклеотиды в растущую цепь ДНК в 51 31… …   Генетика. Энциклопедический словарь

  • Праймер битумно-полимерный — ТЕХНОНИКОЛЬ № 03 (ТУ 5775 042 17925162 2006) – однокомпонентный материал холодного применения. Предназначен для обработки поверхности стальной ортотропной плиты и железобетонной плиты пролетных строений мостовых сооружений перед укладкой… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Инструмент для проектирования грунтовки

    Поиск праймеров, специфичных для вашего шаблона ПЦР (с использованием Primer3 и BLAST).

    Шаблон ПЦР Параметры учебника для начинающих Используйте мой собственный прямой праймер (5 ‘-> 3’ на плюс) Используйте мой собственный обратный праймер (5 ‘-> 3’ на минус пряди) Размер продукта ПЦР Количество праймеров для возврата Температура плавления грунтовки (Т м ) Выбор экзона / интрона Для опций в разделе требуется последовательность мРНК refseq в качестве входных данных для ПЦР. [?]

    Последовательность мРНК refseq (например, запись последовательности entrez, у которой присоединение начинается с NM_) позволяет программе правильно идентифицировать соответствующую геномную ДНК и, таким образом, найти правильные границы экзона / интрона.

    Exon Junction Span Нет предпочтений Праймер должен охватывать экзон-экзонное соединение Праймер не может охватывать экзон-экзонное соединение [?]

    Это контролирует, должен ли праймер охватывать экзонное соединение на вашей матрице мРНК.Опция «Праймер должен охватывать соединение экзон-экзон» заставит программу вернуть хотя бы один праймер (в пределах данной пары праймеров), который охватывает соединение экзон-экзон. Это полезно для ограничения амплификации только мРНК. Вы также можете исключить такие праймеры, если хотите амплифицировать мРНК, а также соответствующую геномную ДНК.

    Exon Junction Match

    Мин 5 ‘матч Мин 3 ‘матча Макс 3 ‘матча

    Минимальное и максимальное количество оснований, которые должны отжигать экзоны на 5 ‘или 3’ стороне соединения [?]

    Это определяет минимальное количество оснований, которые праймер должен отжечь на матрице на 5 ‘стороне (т.е.к началу праймера) или к 3 ‘стороне (т.е. к концу праймера) экзон-экзонного соединения. Отжиг обоих экзонов необходим, поскольку это обеспечивает отжиг области экзон-экзонного перехода, но не одного экзона. Обратите внимание, что этот параметр действует только в том случае, если вы выбрали «Праймер должен охватывать экзон-экзонное соединение» для параметра «Экзон-соединение».

    ,

    Биология почв | NRCS Soils

    Существа, живущие в почве, имеют решающее значение для здоровья почвы. Они влияют на структуру почвы и, следовательно, эрозию почвы и доступность воды. Они могут защитить посевы от вредителей и болезней. Они играют центральную роль в разложении и круговороте питательных веществ и, следовательно, влияют на рост растений и количество загрязняющих веществ в окружающей среде. Наконец, почва является домом для значительной части мирового генетического разнообразия.

    Грунтовый грунт для биологии

    Soil Biology Primer Онлайновый учебник по почвенной биологии представляет собой введение в живой компонент почвы и его вклад в повышение продуктивности сельского хозяйства и качества воздуха и воды. Учебник включает главы, описывающие пищевую сеть почвы и ее связь с состоянием почвы, а также главы о почвенных бактериях, грибах, простейших, нематодах, членистоногих и дождевых червях.

    Онлайн-учебник включает в себя весь текст печатного оригинала, но не все изображения почвенных организмов.Полную историю о пищевой сети почвы легче понять с помощью иллюстраций в печатной версии.

    Печатные копии учебника по почвенной биологии можно приобрести в Обществе по охране почв и воды. Перейти на www.swcs.org

    => Ограничения авторского права: Многие фотографии в онлайн-учебнике по биологии почвы нельзя использовать на других сайтах We b или в других целях без явного разрешения владельцев авторских прав. Пожалуйста, свяжитесь с Обществом охраны почв и воды по адресу: [email protected], чтобы получить помощь в создании защищенных авторским правом (зачисленных) изображений, помеченных в онлайн-учебнике.

    => Текст, графики, таблицы, фотографии без кредитов и графика из источников USDA могут использоваться свободно; однако, пожалуйста, укажите учебник по биологии почв или этот сайт Web .

    Благодарности

    Служба охраны природных ресурсов при содействии Информационного центра по технологиям консервации обеспечила руководство этим проектом.Служба охраны природных ресурсов и Общество охраны почв и воды благодарят многих людей, в том числе следующих, за их вклад.

    Предлагаемая цитата

    • Печатный буклет: Tugel, A.J., A.M. Левандовски и Д. Хаппе-фон Арб, ред. 2000. Учебник по биологии почв. Анкени, И.А .: Общество охраны почв и воды.
    • Онлайн учебник для начинающих: почвенная биология. Доступно: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/biology/ [дата доступа].

    Авторы

    • Элейн Р. Ингам
    • Andrew R. Moldenke, Орегонский государственный университет
    • Клайв Эдвардс, Государственный университет Огайо

    Редакторы

    • Арлин Тугель, Служба охраны природных ресурсов
    • Ann M. Lewandowski, Служба охраны природных ресурсов
    • Deb Happe-vonArb, Общество по охране почв и воды

    Иллюстрации

    • Нэнси К.Marshall, Marshall Designs
    ,